Verma modules over p -adic Arens–Michael envelopes of reductive Lie algebras

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

VERMA MODULES OVER p-ADIC ARENS-MICHAEL ENVELOPES OF REDUCTIVE LIE ALGEBRAS

Let K be a locally compact p-adic field, g a split reductive Lie algebra over K and U(g) its universal enveloping algebra. We investigate the category Cg of coadmissible modules over the p-adic Arens-Michael envelope Û(g) of U(g). Let p ⊆ g be a parabolic subalgebra. The main result gives a canonical equivalence between the classical parabolic BGG category of g relative to p and a certain expli...

متن کامل

Projections of Singular Vectors of Verma Modules over Rank 2 Kac–Moody Lie Algebras

We prove an explicit formula for a projection of singular vectors in the Verma module over a rank 2 Kac–Moody Lie algebra onto the universal enveloping algebra of the Heisenberg Lie algebra and of sl2 (Theorem 3). The formula is derived from a more general but less explicit formula due to Feigin, Fuchs and Malikov [Funct. Anal. Appl. 20 (1986), no. 2, 103–113]. In the simpler case of A1 the for...

متن کامل

ADMISSIBLE NILPOTENT COADJOINT ORBITS OF p-ADIC REDUCTIVE LIE GROUPS

The orbit method conjectures a close relationship between the set of irreducible unitary representations of a Lie group G, and admissible coadjoint orbits in the dual of the Lie algebra. We define admissibility for nilpotent coadjoint orbits of p-adic reductive Lie groups, and compute the set of admissible orbits for a range of examples. We find that for unitary, symplectic, orthogonal, general...

متن کامل

Weight Modules over Exp-polynomial Lie Algebras

In this paper, we generalize a result by Berman and Billig on weight modules over Lie algebras with polynomial multiplication. More precisely, we show that a highest weight module with an exp-polynomial “highest weight” has finite dimensional weight spaces. We also get a class of irreducible weight modules with finite dimensional weight spaces over generalized Virasoro algebras which do not occ...

متن کامل

Koszul Duality for Modules over Lie Algebras

Let g be a reductive Lie algebra over a field of characteristic zero. Suppose that g acts on a complex of vector spaces M by iλ and Lλ, which satisfy the same identities that contraction and Lie derivative do for differential forms. Out of this data one defines the cohomology of the invariants and the equivariant cohomology of M. We establish Koszul duality between them.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2013

ISSN: 0021-8693

DOI: 10.1016/j.jalgebra.2013.04.038